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Abstract— This paper addresses the degree-constrained 

minimum spanning tree problem, a combinatorial optimization 

challenge that arises in network design and resource allocation. By 

leveraging the framework of matroid theory, specifically the 

weighted matroid intersection problem, this paper presents a 

solution that guarantees an optimal spanning tree while satisfying 

degree constraints on specific vertices to ensure balanced load 

distribution across the network. 
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I.   INTRODUCTION 

Network reliability is a study that focus on designing efficient 

networks and ensuring their functionality despite potential 

failures, resource constraints, or dynamic changes. It examines 

how to design, maintain, and optimize networks to achieve 

robust performance, often balancing trade-offs between cost, 

efficiency, and redundancy. Network reliability is a critical 

aspect of modern infrastructure, used in many fields such as 

telecommunications, distributed systems, and cloud computing. 

A key aspect of these studies is constructing networks that 

minimize the risk of overload and maximize operational 

efficiency under given constraints. 

One problem in this domain involves constructing minimum-

weight spanning trees that satisfy specific degree constraints on 

certain nodes, ensuring cost-effective load balancing across the 

network. Traditional algorithms for minimum spanning trees, 

such as Prim’s or Kruskal’s, focus solely on minimizing cost 

without accounting for degree constraints, limiting their 

applicability in real-world scenarios where node capacities may 

be bounded. Furthermore, there are few algorithms capable of 

solving this problem both optimally and efficiently, making it a 

challenging and open area of research in combinatorial 

optimization. 

This paper explores the application of matroids for solving 

constrained optimization problems. A matroid can be thought of 

as a structure that captures the dependencies among elements in 

a set, providing a systematic way to identify optimal subsets 

under given conditions. Matroid intersection extends this idea, 

enabling the simultaneous consideration of two matroids to find 

a common independent set that satisfies both structures. This 

capability is particularly relevant for network design problems 

where multiple constraints, such as cost and degree limits, must 

be addressed simultaneously. By leveraging matroid 

intersection, this paper introduces a novel approach for 

constructing degree-constrained minimum spanning trees, 

enabling cost-effective load balancing across the network. 

 

II.  THEORETICAL BASIS 

A. Set Theory 
1. Definition and Notation 

A set is a collection of distinct objects, which can 

be finite or infinite. Objects in set are called elements. 
A set is typically denoted by a pair of curly braces 

containing its elements. For example: 𝑆 = {𝑎, 𝑏, 𝑐} 

represents a set with three elements, 𝑎, 𝑏, and 𝑐. An 

empty set contains no elements and is denoted by ∅. If 

an element 𝑎 is part of a set 𝑆, it is denoted by 𝑎 ∈ 𝑆. 

The size of a set 𝑆 is the number of elements 

contained in 𝑆, denoted by |𝑆|. 
 

2. Subsets and Power Sets 

A subset is a set whose elements all belong to 

another set. If 𝐴 ⊆ 𝐵, then every element of A is also 

an element of B. The set of all subsets of S is called the 

power set, denoted as 𝑃(𝑆). 

For example: 

𝑆 = {𝑎, 𝑏}, then 𝑃(𝑆) = {∅, {𝑎}, {𝑏}, {𝑎, 𝑏}} 

 
3. Set Operations 

The following are fundamental operations on sets 

- Union 

The union of two sets 𝐴 and 𝐵, denoted 𝐴 ∪ 𝐵, is 

the set of all elements that are in A, B, or both. 

Formally, 𝐴 ∪ 𝐵 = {𝑥: 𝑥 ∈ 𝐴 ∨  𝑥 ∈ 𝐵}. 

- Intersection 

The intersection of two sets 𝐴 and 𝐵, denoted 𝐴 ∩
𝐵, is the set of all elements that are in both 𝐴 and 

𝐵. Formally, 𝐴 ∪ 𝐵 = {𝑥: 𝑥 ∈ 𝐴 ∧  𝑥 ∈ 𝐵}. 

- Difference 

The difference between two sets 𝐴 and 𝐵, denoted 

𝐴 \ 𝐵, is the set of elements that are in 𝐴 but not in 

𝐵. Formally, 𝐴 \ 𝐵 = {𝑥: 𝑥 ∈ 𝐴 ∧  𝑥 ∉ 𝐵}. 

- Symmetric Difference 

The symmetric difference of two sets 𝐴 and 𝐵, 

denoted 𝐴∆𝐵, is the set of elements that are in 𝐴 

or 𝐵 but not both. Formally, 𝐴∆𝐵 = (𝐴\𝐵) ∪
(𝐵\𝐴) 

- Cartesian Product 
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The Cartesian product of two sets 𝐴 and 𝐵, 

denoted 𝐴 × 𝐵, is the set of all ordered pairs (𝑎, 𝑏), 

where 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. Formally 𝐴 × 𝐵 =
{(𝑎, 𝑏):𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}. 

For example: 𝐴 = {1, 2} and 𝐵 = {𝑥, 𝑦}, then 

𝐴 × 𝐵 = {(1, 𝑥), (1, 𝑦), (2, 𝑥), (2, 𝑦)}. 

 

B. Graph Theory 
A graph is a fundamental structure consisting of 

vertices (or nodes) connected by edges. 

1. Definition 

A graph 𝐺 is formally defined as an ordered pair 

𝐺 =  (𝑉, 𝐸), where 𝑉 is the set of vertices (or nodes) 

and 𝐸 is the set of edges, where each edge connects two 

vertices. 

An edge 𝑒 ∈ 𝐸 can be represented as: 

- Undirected edge: 𝑒 = {𝑢, 𝑣}, indicating a 

bidirectional connection between 𝑢 and 𝑣. 

 
Figure 1. Undirected edge e = {1,2} 

- Directed edge: 𝑒 = (𝑢, 𝑣), indicating a directed 

connection from 𝑢 to 𝑣. 

 

Figure 2. Directed edge e = (1, 2) 

2. Properties of Graphs 

- Undirected Graph 

Graph whose edges have no direction. 
- Directed Graph (Digraph) 

Graph whose edges have a direction. 

 

Figure 3. Undirected graph (left) and directed graph (right) [Source: 
https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf] 

- Unweighted Graph 

Graph whose edges don’t have an assigned weight 
(or cost). 

- Weighted Graph 

Graph whose edges have an assigned weight (or 

cost), such as 𝑤(𝑒). 

 

Figure 4. Unweighted graph (left) and weighted graph (right) [Source: 

https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf] 

Note that a graph can be a combination of the elements 
above. 

 

Figure 5. directed weighted graph [Source: 

https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf] 

3. Features of Graphs 
- Degree of a vertex 

The degree of a vertex, denoted as deg (𝑣), is the 

number of edges incident to it. If the edges are 

directed, degree can be categorized into in-degree 

(the number of edges directed towards the vertex) 
and out-degree (the number of edges directed 

away from the vertex). 

- Path 
A sequence of vertices such that each adjacent pair 

is connected by an edge. A simple path contains no 

repeated vertices. 
- Cycle 

A path that starts and ends at the same vertex. A 

graph with no cycle is called acyclic graph. 
- Negative Cycle 

A cycle whose total weight of edges is negative. 

 
4. Special Graphs 

- Tree 

A tree is a connected, acyclic graph. If 𝑇 is a tree 

with 𝑛 vertices, it has 𝑛 − 1 edges. 

 

Figure 6. Examples of Trees [Source: 
https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf] 

- Spanning Tree 

A spanning tree of a graph 𝐺 is a subgraph that 

includes all vertices of 𝐺 and is a tree. 

 

Figure 7. Graph (left) and its spanning tree (right) 
[Source: https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf] 

- Bipartite Graph 

A graph is bipartite if its vertex set 𝑉 can be 

partitioned into two disjoint sets 𝑈 and 𝑊, such 

that every edge only connects a vertex in 𝑈 to one 

in 𝑊. 

 

Figure 8. Bipartite graph [Source: 

https://en.wikipedia.org/wiki/Bipartite_graph] 
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5. Graph Representation 

Graph can be represented in various ways. 

- Adjacency Matrix 

A 2D matrix 𝐴 of size 𝑛 × 𝑛 (where 𝑛 is the 

number of vertices) is used. 𝐴𝑖𝑗 = 1 if there is an 

edge between vertex 𝑖 and vertex 𝑗 and 𝐴𝑖𝑗 = 0 

otherwise. 

 

Figure 9. Unweighted adjacency matrix [Source: 

https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf] 

- Weighted Adjacency Matrix 

A 2D matrix 𝐴 of size 𝑛 × 𝑛 (where 𝑛 is the 

number of vertices) is used. 𝐴𝑖𝑗 = 𝑤(𝑒) if there is 

an edge between vertex 𝑖 and vertex 𝑗 and 𝐴𝑖𝑗 =

∞ otherwise. 

 

Figure 10. Weighted adjacency matrix [Source: 

https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf] 

- Adjacency List 
For each vertex, a list of its neighbors is stored. 

 

Figure 11. Unweighted adjacency list [Source: 

https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf] 

- Weighted Adjacency List 

For each vertex, a list of its neighbors and edge 
weight is stored 

 

Figure 12. Weighted adjacency list [Source: 

https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf] 

- Edge List 

A list of edges of the graph. 

 

Figure 13. Edge list [Source: https://osn.toki.id/data/pemrograman-
kompetitif-dasar.pdf] 

- Weighted Edge List 

A list of edges and the respective weights of the 

graph. 

 

Figure 14. Weighted edge list [Source: 
https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf] 

 

C. Minimum Spanning Tree Problem 
The Minimum Spanning Tree (MST) problem is a 
fundamental problem in graph theory and 

combinatorial optimization. It involves finding a subset 

of edges in a weighted, connected, and undirected 
graph that: 

- Connects all the vertices in the graph. 

- Forms a tree 
- Minimizes the total weight of the edges in the tree. 

Formally, 

Given a graph 𝐺 = (𝑉, 𝐸), where 𝑉 is the set of vertices 

and 𝐸 is the set of edges with associated weights 𝑤(𝑒) 

for each edge 𝑒 ∈ 𝐸, the objective is to find a subset 

𝑇 ⊆ 𝐸 such that: 

- 𝑇 spans all vertices in 𝑉 (i.e., it connects all 

vertices). 

- 𝑇 forms a tree. 

- The total weight ∑ 𝑤(𝑒)𝑒∈𝑇  is minimized. 

This problem can be solved using various algorithms 

such as Kruskal’s algorithm, Prim’s algorithm, or 

Boruvka’s algorithm. 

 

Figure 15. Graph (left) and its MST (right) [Source: 
https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf] 

 

D. Shortest Path Problem and Bellman-Ford 

Algorithm 
The shortest path problem involves finding the 

path between two vertices in a graph such that the sum 

of the weights of the edges along the path is minimized. 
Formally, 

Given a graph 𝐺 = (𝑉, 𝐸). Let 𝑠 ∈ 𝑉 be the source 

vertex, and let 𝑡 ∈ 𝑉 be the target vertex. The goal is to 

find a path 𝑃 = (𝑠, 𝑣1, 𝑣2, … , 𝑡) where: 

- 𝑃 ⊆ 𝐸 (all edges in the path belong to 𝐸) 

- ∑ 𝑤(𝑢, 𝑣)(𝑢,𝑣)∈𝑃  is minimized. 

For the single-source shortest path problem, the 

objective is to compute the shortest path 𝑃𝑠(𝑣) for 

every vertex 𝑣 ∈ 𝑉, such that 𝑑(𝑠, 𝑣) =
min ∑ 𝑤(𝑢, 𝑣)(𝑢,𝑣)∈𝑃 , where 𝑑(𝑠, 𝑣) is the shortest 

distance from 𝑠 to 𝑣. 

There are various algorithm that can be utilized to 

solve shortest path problem, one such algorithm is the 

Bellman-Ford algorithm. 
The Bellman-Ford algorithm works by iteratively 

relaxing all edges in a graph to compute the shortest 

paths from a single source vertex to all other vertices. 

It initializes the distance to the source as 0 and all other 
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vertices as infinity. Then, for |𝑉| − 1 iterations, it 

checks each edge (𝑢, 𝑣) and updates the distance to 

vertex 𝑣 if a shorter path through 𝑢 is found. 

 

Figure 16. Pseudocode of Bellman-Ford algorithm [Source: 

https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf] 

 

E. Disjoint Set Union (DSU) 
Disjoint Set Union (DSU), also known as the 

Union-Find data structure, is a data structure for 

managing a collection of disjoint sets. It supports two 
key operations efficiently: 

1. Find: Determine the representative (or leader) of 
the set containing a particular element. 

2. Union: Merge two sets into one, ensuring that the 

resulting sets remain disjoint. 
DSU can be used to maintain and check the 

connectivity of nodes in graph. DSU can also be used 

to detect cycles in a graph. 

 
F. Matroid Theory 
1. Definition 

A matroid 𝑀 is formally defined as an ordered pair 

(𝑆, 𝐼) where 𝑆 is a finite set called the ground set and 𝐼 

is a family of subsets of S, called the independent sets, 

that satisfy the following axioms: 

a. Non-empty property: ∅ ∈ 𝐼 

b. Hereditary property: If 𝐴 ∈ 𝐼 and 𝐵 ⊆ 𝐴, then 𝐵 ∈
𝐼. 

c. Exchange property: If 𝐴, 𝐵 ∈ 𝐼 and |𝐴| > |𝐵|, then 

there exists 𝑥 ∈ 𝐴\𝐵 such that 𝐵 ∪ {𝑥} ∈ 𝐼. 

These rules represent the idea of independence, similar 
to how some sets of vectors in linear algebra are 

independent or how some groups of edges in a graph 

form structures without cycles. 
Example: 

𝑀 = (𝑆, 𝐼) where 𝑆 = {𝑥, 𝑦, 𝑧} and 𝐼 =
{∅, {𝑥}, {𝑦}, {𝑧}, {𝑥, 𝑦}, {𝑥, 𝑧}}. 

 
2. Basis, Circuits, and Rank 

- Basis 

A basis of a matroid is a maximal independent set. 
All bases of a matroid have the same size, otherwise we 

can add something to the smaller basis from a greater 

basis by the exchange property. Any independent set is 
a subset of some basis (by hereditary property and 

exchange property), thus knowing all the bases of a 

matroid describes the whole matroid. We can construct 
a basis of a matroid using Rado-Edmonds algorithm. 

- Circuit 

A circuit is a minimal dependent set, a dependent 

set where removing any element makes it independent. 
- Rank function 

The rank of a matroid is the size of its bases. The 

rank of a matroid can also be defined more flexibly. 

Formally, 𝑟(𝐴) is the rank of a set 𝐴 in matroid 𝑀 =
(𝑆, 𝐼). 

 The rank function satisfies 

- 𝑟(𝐴) ≤ |𝐴| for all 𝐴 ⊆ 𝑆. 

- 𝑟(𝐴) ≤ 𝑟(𝐵) if 𝐴 ⊆ 𝐵 ⊆ 𝑆. 

- 𝑟(𝐴 ∪ 𝐵) + 𝑟(𝐴 ∩ 𝐵) ≤ 𝑟(𝐴) + 𝑟(𝐵). 

 

3. Types of Matroid 

Matroids are abstract structures that can represent a 
wide variety of problems. Matroids can be created or 

tailored to model specific problems by defining the 

ground set and the independence rule. Below are some 
common types of matroid. 

- Graphic Matroid 

A graphic matroid is derived from a graph 

𝐺 = (𝑉, 𝐸), where the ground set 𝑆 is the set of 

edges 𝐸 of the graph and the independent sets 𝐼 are 

the subsets of 𝑆 that do not form a cycle. 

- Colorful Matroid 

A colorful matroid arises when elements are 
grouped into distinct categories or colors. The 

ground set consists of colored elements. Each 

element has exactly one color. Set of elements is 
independent if no pair of included elements share 

a color. 

- Uniform matroid 

The ground set 𝑆 of a uniform matroid is any 

finite set. The independent sets 𝐼 are all subsets of 

𝑆 with size at most 𝑘, where 𝑘 is a fixed integer. 

 

4. Matroid Intersection 

The matroid intersection problem seeks a 
maximum common independent set between two 

matroids 𝑀1 = (𝑆, 𝐼1) and 𝑀2 = (𝑆, 𝐼2) defined on the 

same ground set 𝑆. Formally, the problem can be stated 

as finding an independent set 𝐼 that satisfies 
|𝐼| = max{|𝐼′|: 𝐼′ ∈ 𝐼1 ∩ 𝐼2} 

Matroid intersection is useful because it allows us 

to find a structure that satisfies two different constraints 
simultaneously. By identifying the largest set of 

elements that are independent in both matroids, it 

provides a formal framework for solving problems 
where multiple requirements  must be met together. 

The weighted matroid intersection problem 

extends the matroid intersection problem by assigning 
weights to the elements of the ground set. The goal is 

to find a common independent set between two 

matroids that maximizes the total weight of its 
elements. Formally, the problem can be stated as 

finding an independent set 𝐼 that satisfies 

∑ 𝑤(𝑒)

𝑒∈𝐼

= max {∑ 𝑤(𝑒)

𝑒∈𝐼′

: 𝐼′ ∈ 𝐼1 ∩ 𝐼2} 

 where 𝑤(𝑒) is the weight of edge 𝑒. 
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In order to solve matroid intersection problem, 

there are two results that play a central role in the 

solution of matroid intersection problem. 
First, the min-max relation theorem establishes 

that the maximum size of a common independent set 

𝐼 ∈ 𝐼1 ∩ 𝐼2 between two matroids 𝑀1 = (𝑆, 𝐼1) and 

𝑀2 = (𝑆, 𝐼2) is given by 

max|𝐼| = min
𝐴⊆𝑆

(𝑟1(𝐴) + 𝑟2(𝑆\𝐴)) 

where 𝑟1 and 𝑟2 are the rank functions of the 

matroids. This equality provides a theoretical limit for 

the size of the independent set and confirms the 

optimality of the solution. It guarantees that the optimal 
solution is reached by ensuring tha the theoretical 

upper bound is achieved. 

The Edmonds-Lawler theorem extends this 
concept to the weighted case, where each element in 

the ground set 𝑆 is assigned a weight, and the goal is to 

find a maximum-weight common independent set. This 

is achieved using an augmenting path algorithm on an 
“exchange graph”, where vertices represent elements 

in 𝑆, and edges indicate opportunities to exchange 

elements between the current independent set and the 

rest of the ground set. The algorithm iteratively finds 

augmenting paths to increase the total weight until no 
further improvements can be made. The min-max 

relation ensures that this process converges to the 

theoretical maximum. 
 

III.   PROBLEM DEFINITION AND SOLUTION 

A. Problem Definition 

The problem tackled in this paper involves finding a cost-

effective spanning tree in a graph while satisfying specific 

degree constraints on certain vertices. This type of problem 

arises in network design, where constraints like capacity limits 

or load balancing must be incorporated into the optimization 

process. Formally the problem statement is given below. 

Given an undirected, connected, and weighted graph 𝐺 =
(𝑉, 𝐸) where: 

1. 𝑉 is the set of 𝑛 vertices, 

2. 𝐸 is the set of edges, 

3. 𝑤(𝑒) is the weight of each edge 𝑒 ∈ 𝐸. 

Construct a spanning tree 𝑇 ⊆ 𝐸 that satisfies the following 

conditions: 

1. 𝑇 is a spanning tree, meaning it connects all vertices in 𝑉 

without forming cycles. 

2. For a subset of vertices 𝑉𝑘 ⊆ 𝑉 (where |𝑉𝑘| = 𝑘), each 

vertex 𝑣 ∈ 𝑉𝑘 has a degree constraint 𝑑(𝑣), specifying 

that the degree of 𝑣 in the spanning tree 𝑇 must not 

exceed 𝑑(𝑣). 

3. The total weight of the edges in T is minimized. 

 

 B. Solution 

In order to solve the degree-constrained minimum spanning 

tree problem, we adopt a matroid intersection solution that 

combines a graphic matroid (which ensures acyclicity) and a 

degree matroid (which enforces degree constraints on the special 

vertices). The first part of this solution is that we first fix a small 

“forest” among the special vertices (since the number of 

possible forests on a small set of special vertices is limited), and 

then we attempt to complete the MST by adding other edges in 

a way that respects both acyclicity and degree bounds. 

We enumerate all such candidate forests 𝑇. Each forest 𝑇 

represents a pre-selected set of edges between special vertices. 

Once 𝑇 is fixed, only the remaining edges—those with zero or 

one endpoint among the special vertices—are considered for 

inclusion in the final MST. During this enumeration, if a forest 

is already invalid (e.g., it contains cycles among the special 

vertices or violates some degree constraint immediately), we 

discard it. Otherwise, we proceed to the matroid intersection 

phase. 

After choosing a valid forest 𝑇 among the special vertices, we 

want to find additional edges to form a minimum spanning tree 

that satisfies both the acyclicity (graphic matroid) and the degree 

constraints (degree matroid). In matroid intersection, we 

maintain an independent set that already satisfy both matroid 

properties. To improve or “augment” this set, we construct an 

exchange graph whose vertices represent edges in the ground 

set, and we add directed edges between these vertices according 

to specific feasibility rules: 

1. From unused edges to used edges if adding the unused 

edge (and removing some used edge if necessary) still 

satisfies both the graphic and degree matroid constraints. 

2. From used edges to unused edges similarly, when 

removing a used edge and adding an unused one leads to 

a feasible solution. 

Finding a sequence of swaps (edges in the exchange graph) 

that improves the total cost is done via an augmenting path 

procedure. We search for a path in the exchange graph that 

begins at some “entering” edge (i.e., an unused edge that can 

potentially be added) and ends at a suitable “exiting” edge. This 

ensures that we get a larger independent that is closer towards 

the optimal answer. 

Unlike simple BFS-based augmenting path algorithms for 

unweighted matroid intersection, our problem involves 

weighted edges, hence the costs must be factored into each 

swap. To account for these weights, we track potential 

improvements using a Bellman–Ford style relaxation loop. Each 

vertex in the exchange graph (representing a ground-set edge) 

holds a distance value that indicates how much improvement 

(cost reduction) can be obtained by flipping edges along a path 

ending at that vertex.  If there are multiple ways to obtain a path 

with optimal value, we choose the path with the least edges 

travelled since that minimizes the number of unnecessary 

exchanges.  Once no further improvement is possible (i.e., no 

augmenting path improves the solution), we have reached a local 

optimum under the chosen forest 𝑇. 

Having successfully performed matroid intersection with 

respect to the fixed forest 𝑇, we obtain a candidate MST that 

respects the degree constraints on the special vertices. We repeat 

this process for every possible forest 𝑇 among the special 

vertices while keeping track of the best solution. This final best 

solution is guaranteed to be a degree-constrained MST that 

satisfies all of our problem requirements. We can reconstruct the 

tree by using the edges in the final independent set we 

maintained throughout the matroid intersection process. 
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IV.   IMPLEMENTATION 

The implementation of the solution is written in C++ for 

efficiency reasons. Due to the extensive length of the code, it 

cannot be included in full within this paper. However, readers 

can access the complete implementation and related 

documentation on the project's GitHub repository at 

https://github.com/BP04/weighted-matroid-intersection. 

 

A. Disjoint Set Union (DSU) Class 

The DSU class is responsible for tracking connected 

components in the graph and checking for acyclicity. The data 

structure acts as an “oracle” to efficiently check if the set being 

build is independent (have no cycle). Each edge addition 

corresponds to a union operation, and each cycle check is a 

matter of comparing representatives. 

 

B. prepare() Function 

This subprogram is invoked before each augmentation step to 

ensure consistency: 

1. It initializes or clones the DSU state to match the 

current set of chosen edges. All used edges are “union-

ed,” ensuring we have the correct connectivity relation 

between nodes. 

2. It resets the degree array so that each vertex’s 

remaining capacity is reflected accurately. For every 

edge in the MST, the degrees of its endpoints are 

decremented. 

3. With these updates, subsequent checks in augment() 

can reliably determine whether adding a new edge 

would break either the cycle-free condition or a degree 

limit. 

 

C. augment() Function 

This procedure is the core of the matroid intersection strategy, 

seeking augmenting paths in an exchange graph: 

1. Preparation: A call to prepare() resets the DSU and 

degree arrays to reflect which edges are currently in the 

partial MST. 

2. Feasibility Checks: For each edge in the ground set, we 

mark whether adding it would create a cycle (safe1) and 

whether adding it is permissible under the remaining 

degree constraints (safe2). 

3. Exchange Graph Construction: Each edge in the ground 

set is treated as a node in a directed graph; edges between 

these nodes represent potential “swaps” (one edge leaves 

the MST, another enters) that maintain both acyclicity 

and degree constraint safisfaction. 

4. Bellman–Ford Routine: Since edges have weights, we 

apply a Bellman–Ford routine that looks for negative-

cost paths in the exchange graph. Finding a negative-cost 

path corresponds to a cost-improving series of swaps—

i.e., an augmenting path. 

5. Flipping Edges: If such a path exists, we flip the chosen 

edges between “used” and “unused” status, updating the 

MST cost. If no such path remains, augmentation halts 

for this configuration. 

 

D. calculate() Function 

Once we fix a forest among special vertices, we must 

incorporate additional edges from the ground set to complete a 

spanning tree of all 𝑁 vertices. The calculate function manages 

this integration: 

1. It begins with a certain number of edges already placed, 

so need indicates how many more edges are necessary. 

The initial cost of the current forest is init_cost. 

2. Repeatedly, the function calls augment(), which attempts 

to improve the current set of edges via exchange. If an 

augmentation is successful, calculate() checks whether 

the resulting cost is promising (i.e., better than the best-

known answer) and whether the correct number of edges 

has been reached. 

3. If all needed edges can be integrated successfully while 

respecting degree constraints and avoiding cycles, 

calculate returns the final cost. Otherwise, it returns −1 

to indicate infeasibility. 

 

E. build_answer() Function 

This function implements the enumeration of every possible 

forests among the first 𝑘 special vertices. Internally, 

build_answer() works recursively. The function keeps track of 

which special vertex it is working on right now. When the edges 

have been assigned to this vertex, the function move on to the 

next vertex. When all potential edges has been assigned between 

all special vertices, the code verify if these chosen edges form a 

valid forest using DSU, and whether the configuration satisfy 

degree constraints on each special vertex. If valid, we progress 

to finishing the MST with the calculate() function. 

 

V.  TESTS AND RESULTS 

Given the testcase below 
# Number of vertices and special vertices respectively 

10 5 

# Label of special vertices and degree constraint 

0 5 

1 3 

2 4 

3 2 

4 1 

# Adjacency Matrix 
29 49 33 12 55 15 32 62 37 

61 26 15 58 15 22 8 58 

37 16 9 39 20 14 58 

10 15 40 3 19 55 

53 13 37 44 52 

23 59 58 4 

69 80 29 

89 28 
48 

 

Running the above test case we get 

https://github.com/BP04/weighted-matroid-intersection
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Hence we’ve constructed the degree-constrained minimum 

spanning tree. Below is the visualization of the tree given by the 

code. 

 

Figure 17. Visual of the constructed degree-constrained MST 

The implementation was also tested on the benchmark 

problem DIY Tree from Codeforces. This problem provides a 

well-built test cases for evaluating the correctness and efficiency 

of the solution under realistic constraints. The test cases include 

various graphs with degree constraints and edge weights, 

ensuring that the implementation handles a wide range of 

scenarios effectively. The implementation passed all test cases 

thus demonstrating its correctness and ability to efficiently solve 

the problem while adhering to the specified constraints. 

 

 

Figure 18. Result of testing implementation to benchmark problem 

 

VI.   CONCLUSION 

In this paper, we explored the application of matroid theory 

and the weighted matroid intersection algorithm to solve the 

degree-constrained minimum spanning tree problem. By 

leveraging the Edmonds-Lawler theorem and the min-max 

relation, we developed an approach that guarantees an optimal 

solution, as demonstrated through testing on the benchmark 

problem. The implementation successfully handles a wide range 

of scenarios, consistently providing the correct and optimal 

spanning tree. 

However, while the solution is theoretically sound and 

achieves optimality, the computational time required to compute 

the tree can become significant for larger graphs. This shows a 

potential area for improvement, where further optimizations or 

heuristic approaches could be explored. 

Despite these limitations, the methodology presented here 

showcases the power of matroid theory in solving constrained 

optimization problems. 

 

VII.   APPENDIX 

GitHub: https://github.com/BP04/weighted-matroid-

intersection  
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